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Permeability and effective porosity of porous media

A. Koponen, M. Kataja, and J. Timonen
Department of Physics, University of Jyva¨skylä, P.O. Box 35, FIN-40351 Jyva¨skylä, Finland

~Received 4 December 1996!

The concept of permeability of porous media is discussed, and a modification of Kozeny’s permeability
equation to include the effect of effective porosity is introduced. An analytical expression for the specific
surface area of a system constructed of randomly placed identical obstacles with unrestricted overlap is
derived, and a lattice-gas cellular automaton method is then used to simulate the dependence on porosity of
permeability, tortuosity, and effective porosity for a flow of Newtonian uncompressible fluid in this two-
dimensional porous substance. The simulated permeabilities can well be explained by the concept of effective
porosity, and the exact form of the specific surface area. The critical exponent of the permeability near the
percolation threshold is also determined from the simulations.@S1063-651X~97!11109-6#

PACS number~s!: 47.55.Mh, 47.15.2x
e
th
us
ic

ia

-

re
t
r

ze
a
iu

th
lu

be
re
a
il
s
r t

ca
re
th
ud
is

al
a

ut-
irect
ng
ltz-
ty
e

ws

late
a
mly
lap.
e-
ility,

rtu-
om-
d in

in
rea.
o-
ef-
in
e-
as

-
e-
ro-
ost

ol-
us
-

hs
ratio

ac-
I. INTRODUCTION

Studies of flow through porous media have mainly be
concerned with the derivation of macroscopic laws for
fluid flow. For the case of creeping flow of a single visco
fluid through a porous medium, e.g., the phenomenolog
law first discovered by Darcy,

q52
k

m
“p, ~1!

is known to hold for a wide variety of natural porous med
ranging from loose sand to tight granite rocks@1–3#. Hereq
is the flux of the fluid through the porous medium,m is the
viscosity of the fluid, andp is the fluid pressure. The perme
ability coefficient k is a measure of fluid conductivity
through the substance.

The prediction of the permeabilityk in Eq. ~1! for various
porous media has been a long-standing problem of g
practical relevance. The experimental methods used in
studies have varied from rather straightforward measu
ments@3–6# to more sophisticated approaches, which utili
e.g., mercury porosimetry, electrical conductivity, nucle
magnetic resonance, and acoustic properties of the med
@6–12#. Theoretical work has often involved models wi
simplified pore geometries, which allows an analytical so
tion of the microscopic flow patterns@1,2,13#. More sophis-
ticated models based on statistical methods have also
used@2,3,14#. However, due to the extremely complex natu
of the phenomena involved, many basic questions rem
unanswered. Various correlations between the permeab
and the parameters describing the geometrical propertie
the medium have been suggested, but a general form fo
permeability as a function of porosity is still lacking.

Percolation theory is an invaluable tool in the theoreti
studies of flow phenomena in porous media and fractu
rock @15,16#. Percolation concepts are also essential for
correct interpretation of many experimental data. The st
of percolation properties of fluid flow in a porous medium
usually very difficult. In this work we use direct numeric
simulations to find the scaling law for the permeability of
two-dimensional porous medium.
561063-651X/97/56~3!/3319~7!/$10.00
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During the last few years, rapid development of comp
ers and computational algorithms has made possible d
simulations of complicated fluid flow phenomena. Amo
the promising new methods are lattice-gas and lattice Bo
mann methods@17–23# that can be applied to a large varie
of fluid flow problems. The geometrical versatility of thes
methods makes them particularly useful in simulating flo
in irregular geometries@24–34#.

In this paper we use the lattice-gas method to simu
numerically a creeping flow of Newtonian fluid through
two-dimensional porous substance that consists of rando
placed rectangles of equal size and unrestricted over
Within this numerical approach, we study correlations b
tween various macroscopic parameters such as permeab
porosity, effective porosity, specific surface area and to
osity, which are often used to characterize transport phen
ena in porous media. The model of porous medium use
this work is chosen mainly because it is possible to derive
this case an exact expression for the specific surface a
This is useful when comparing simulation results with the
retically derived expressions. To this end the concept of
fective porosity was found to be of crucial importance,
explaining the simulated permeability in particular. The b
havior of permeability near the percolation threshold w
also analyzed.

II. PERMEABILITY OF A POROUS SUBSTANCE

In theoretical and experimental work on fluid flow in po
rous media it is typically attempted to find functional corr
lations between the permeability and some other mac
scopic properties of the porous medium. Among the m
important of such properties are the porosityf and the spe-
cific surface areaS, which give the ratios of the total void
volume and the total interstitial surface area to the bulk v
ume, respectively. Another useful characteristic of poro
media is the tortuosityt, which has been introduced to ac
count for the complexity of the actual microscopic flow pat
through the substance. Tortuosity can be defined as the
of a ~properly weighted! average length of microscopic flow
paths to the length of the system in the direction of the m
roscopic flux@35#.
3319 © 1997 The American Physical Society
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Simple dimensional analysis suggests that the perme
ity of a porous medium is of the formk5 f (f,t)/S2, where
f (f,t) is a dimensionless function off andt. Various sim-
plified models can be used to find suitable candidates fof .
Darcy’s law, Eq.~1!, can easily be derived within the simp
capillary theory by Kozeny, in which the porous medium
envisaged as a layer of solid material with straight para
tubes of a fixed cross-sectional shape intersecting the sam
Within this model, the permeability is explicitly given as

k5
f3

cS2
, ~2!

wherec is the Kozeny coefficient that depends on the cr
section of the capillaries. For cylindrical capillaries,c52.
The simplest way to introduce tortuosity in the capilla
model is to allow the tubes to be inclined in such a way t
the axes of the capillaries form a fixed angleu with the
normal of the surface of the material~while the azimuthal
angle of the tubes is randomly distributed!. In this case the
permeability becomes

k5
f3

ct 2S2
, ~3!

wheret51/cosu is the tortuosity of the medium. Equation
~2! and~3! are perhaps the most widely used expressions
the permeability of a porous medium. Porous media can
ten be found to conform to them, although quantitat
agreement should not generally be expected. For syst
composed of randomly placed obstacles, e.g., permeab
behaves for high porosities (f→1) as 1/(12f), and the
Kozeny model is not valid.

While considering flow through a porous medium, on
the interconnected pores are of interest, as the occluded p
~pores not connected to the main void space! do not contrib-
ute to the flow.~The term porosity is sometimes used
include the interconnected pore space only.! The dead-end
pores are another type of pores that contribute very little
the flow. These pores belong to the interconnected po
but, owing to their geometry, no global pathlines inters
them. The occluded pores and the dead-end pores form
nonconducting pore space of the medium. The effective
rosity feff of a porous medium can be defined as the ratio
the volume of the conducting pores to the total volume.

A common method of constructing models of porous m
dia is to place solid obstacles in a two- or three-dimensio
test volume@15#. The properties of the medium are dete
mined by the shape, size, and number of the obstacles,
by the distribution of the obstacles within the volume.
such ‘‘materials’’ with high porosity, all of the void spac
usually contributes to the flow through it. The effective p
rosity of the medium is then equal to the porosity. In contr
to this, for low porosity materials, a large part of the to
void space may be nonconducting. For such media the ef
tive porosity may therefore be significantly smaller than
geometrical porosity. At the percolation threshold, defined
the point where the medium becomes completely block
permeability and effective porosity both vanish. It is the
fore clear that for porous media for which the percolati
il-
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threshold appears at a finite porosityfc , the Kozeny equa-
tion, as given by Eqs.~2! or ~3!, is not valid forf→fc .

The simplest way to modify Eqs.~2! and ~3! to include
the effect of nonconducting pores is to replace the porositf
with the effective porosityfeff ~notice that in simple capil-
lary modelsfeff5f). We thus obtain

k5
feff

3

cS2
~4!

or

k5
feff

3

ct 2S2
. ~5!

At this point, we shall not try to substantiate Eqs.~4! and~5!
further. Instead, we shall apply the lattice-gas cellular
tomaton method for fluid flow in a two-dimensional rando
porous medium, and compare the simulated results with
meabilities given by Eqs.~2!, ~3!, ~4!, and~5!. Notice that all
three quantitiesfeff , t, andS are functions of porosity.

In what follows we shall consider a simple model of p
rous media in which rectangles of equal size and unrestric
overlap are placed randomly in a two-dimensional volu
~see Fig. 1!. Although such a model may be consider
somewhat artificial, it nevertheless captures much of the g
metrical complexity of natural porous media, and gives
good testing ground for the validity of various permeabil
equations in two dimensions.

In order to compare various models of permeability w
results of numerical simulations effectively, it is benefic
first to express the formulas Eqs.~2!, ~3!, ~4!, and ~5! as
explicit functions of porosityf alone. To do this, we have to
find the dependence on the porosityf of the specific surface
areaS, tortuosityt, and effective porosityfeff .

For the model of freely penetrable obstacles, an analyt
relation between the specific surface area and porosity
easily be found. ConsiderK freely overlapping obstacles o
arbitrary but equal shape and size, and placed in a volumV
in ann dimensional space. LetV0 andA0 be the volume and
surface area of these obstacles, respectively. The expect

FIG. 1. A porous sample composed of 300 rectangles and h
ing a porosity off50.47, and a dimensionless specific surface a
of S50.69.
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value of the porosityf is equal to the probability that a
given point insideV is not overlapped by any of theK ob-
stacles, i.e.,

f5S 12
V0

V D K

. ~6!

Similarly, the expectation value of the total surface area
the ensemble of obstacles,A, is given by the total number o
obstacles times the surface area of a single obstacle time
probability that a given point on the surface of an obstacl
not overlapped by any other obstacle, i.e.,

A5KA0S 12
V0

V D K21

. ~7!

Solving the ratioV0 /V from Eq. ~6!, and using Eq.~7!, we
find that the specific surface areaS[A/V is given by

S5
n

R0
f~K21!/K

12f1/K

1

K

, ~8!

whereR05nV0 /A0 is the hydraulic radius of the obstacle
In the limits K→` and V→`, such that the porosityf
remains constant, we obtainS in a simple and appealing
form,

S52
n

R0
f lnf ~9!

~see Fig. 2!.
In an earlier work@35# we found numerically an approxi

mate correlationt50.8(12f)11 for the tortuosity in the
case of freely penetrating rectangles. The simulations w
then made for porosities greater than 0.5. In Sec. IV be
we shall show new results reaching tof50.4 @see Eq.~10!

FIG. 2. The simulated dimensionless specific surface areaSR0

as a function of porosityf. HereR0518.6 is the hydraulic radius
of the rectangles. The statistical errors of the simulated values
smaller than the plotting symbols. The solid line is given by t
theoretical expression Eq.~9! with n52 ~two-dimensional space!.
f

the
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w

below#. We shall also present a corresponding approxima
relation between the effective porosity and porosity@see Eq.
~11! below#.

III. LATTICE-GAS SIMULATIONS

We solved numerically the behavior of the two
dimensional creeping flow for the present model of rand
porous medium using the FHP-III lattice-gas method@17#.
The number of fluid particles per lattice site was 3.5, wh
provides the best approximation for the solution of the l
earized Navier-Stokes equation~creeping flow! within the
present method@17#. With this density the logarithmic in-
crease of viscosity with an increasing system size is a
avoided@36#. Contrary to the common practice of imitatin
the permeability measurements, where the sample is pla
in a tube@26,29,30#, we imposed periodic boundary cond
tions on the lattice in both directions. This approach has
advantage of decreasing the finite-size effects, and, e.g.
boundary effects caused by fluid penetrating into the por
medium are eliminated. The fluid was forced to move in t
positive x direction by applying an external force on th
particles@36#. The porosityf of the medium was defined a
the ratio of the number of unoccupied sites to the numbe
all lattice sites.

The tortuosity and the effective porosityfeff were calcu-
lated using both 1003100 and 2003200 lattices with rect-
angles of 10310 lattice sites. The larger lattice was used
the porosity regionf,0.55. The number of different con
figurations was about 7 for the smaller lattice and 30 for
larger lattice. In these calculations, the velocity field was fi
allowed to saturate for 40 000 time steps for each configu
tion. The local velocities of the particles were then averag
over 400 000 time steps in order to ensure an undistur
and smooth velocity field. The flow lines starting from ea
lattice site in the void space were found by interpolating
time-averaged flow velocity field. The tortuosityt of each
sample was then calculated using the method describe
Ref. @35#. If the flow lines did not find their way through th
whole medium, their starting points were assumed to lay
the nonconducting pore space. Finally, the effective poro
of each porous sample was calculated as the ratio of
number of those lattice sites from which the interpolation
the flow lines through the whole medium was successful
the total number of lattice sites.

The specific surface areaS and the permeabilityk were
calculated using a 8003800 lattice with rectangles of 40340
lattice sites. The number of rectanglesK varied from 20 to
390 corresponding to porosities ranging from 0.95 to 0.
The number of different configurations used at eachK was
ten in most cases. The number of iterations needed for re
ing an adequate degree of saturation of the velocity fi
increased with an increasing porosity. The saturation ti
used in permeability calculations varied between 30 000
200 000 time steps. After saturation, the fluid velocity w
found by averaging the particle velocities over 20 000 tim
steps.

In order to study the difference between random syste
and regular lattices, which are often used in theoretical st
ies, we also made permeability simulations for systems
which the rectangles were placed in a regular square lat

re



5
36

n
-
s
w

r

e
a
la
c

r

at
it

d

ve

in-
om
is

-

n-

al-
n
c-

e
on.

lts,
ces

20

ta
e

own

al

3322 56A. KOPONEN, M. KATAJA, AND J. TIMONEN
In this case the number of rectangles varied from 16 to 2
which corresponded to porosities ranging from 0.96 to 0.

IV. RESULTS

In Fig. 1 we show an example of a porous medium co
structed of 300 rectangles of size 40340 sites placed ran
domly in a 8003800 lattice. The porosity of this sample wa
f50.47 and the dimensionless specific surface area
S50.69.

In Fig. 2 we show the plot of the simulated specific su
face areaS as a function of porosityf together with the
theoretical curve, Eq.~9!. The values ofS are expressed her
in dimensionless form, being multiplied by the hydraulic r
dius R0 of the rectangles. Notice that due to the triangu
simulation lattice used here, the vertical sides of the re
angles are shorter than the horizontal sides by a facto
sin(p/3). The hydrodynamic radius was thereforeR0'18.6
lattice spacings.

The simulated values of tortuosityt are shown in Fig. 3
as a function of porosityf. Also shown in this figure is a fit
to the simulated values using a function of the form

t511a
~12f!

~f2fc!
m

, ~10!

with the values of the fitting parameters beinga50.65 and
m50.19. The expression Eq.~10! has been chosen such th
tortuosity is a monotonously decreasing function of poros
~at f.fc) and diverges at the percolation thresholdfc @15#.
For the present system the percolation threshold isfc50.33
@37#.

The conducting pore space~white regions! of the porous
sample shown in Fig. 1, and determined by the method
scribed above, is shown in Fig. 4. The~geometrical! porosity
of the sample isf50.47 while the effective porosity in this
particular case isfeff50.40.

In Fig. 5 we show the simulated values of the effecti

FIG. 3. The simulated tortuosityt as a function of porosityf.
The solid squares show the values of tortuosity simulated for a
3200 lattice, and the solid circles show the results from Ref.@35#,
where a 1003100 lattice was used. The error bars include the s
tistical errors in tortuosity only. The solid line is the fit to th
simulated points by Eq.~10!.
6,
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porosity as a function of porosity. The error bars shown
clude only the statistical error associated with the rand
positioning of the obstacles. The solid line shown in Fig. 5
a fit to the calculated points by

feff5ax32~2a1fc!x
21~a111fc!x, ~11!

wherex5(f2fc)/(12fc). The fitted value of the param
etera is a50.3. The expression Eq.~11! is simply the most
general third-order polynomial in which the natural co
straints, feff5dfeff /df51 at f51, and feff50 at
f5fc50.33, have been implemented. With the given v
ues offc and a, this expression also fulfills the conditio
that feff<f for all f<1. We emphasize that the true fun
tional form of feff as a function off is not known. Expres-
sions other than Eq.~11! can also be found which would giv
a good quantitative fit to the results of the present simulati
As an example we give the expressionfeff512 lnf/lnfc ,
which gives a good quantitative fit to the simulated resu
but, with porosities higher than 0.8, the expression produ

0

-

FIG. 4. The conducting pore space of the porous sample sh
in Fig. 1 corresponding to an effective porosityfeff50.40.

FIG. 5. The simulated effective porosityfeff as a function of
porosityf. The solid line is the fit by Eq.~11!, and the dotted line
is the curvefeff5f. The error bars include only the statistic
errors in the effective porosity.
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56 3323PERMEABILITY AND EFFECTIVE POROSITY OF . . .
feff larger, if only very slightly, thanf. It thus fails to give
a qualitatively correct behavior in this porosity region.

The permeabilities simulated for the model system
shown in Fig. 6. The error bars again include the statist
errors in permeability only. Also shown are the predictio
given by the permeability expressions, Eqs.~2!–~5!, with S,
t, and feff given by Eqs.~9!, ~10!, and ~11!, respectively,
with the theoretical valuefc50.33. Here the Kozeny coef
ficient c was used as the fitting parameter. The permeabili
were made dimensionless by dividing by the hydraulic rad
R0 squared. For expressions Eqs.~2! and~3! ~curves 1 and 2
in Fig. 6!, fits to all of the data points were clearly unsat
factory. Therefore fits were made, instead, in a narrow
rosity region at midporosities, where these formulas seem
give a qualitatively correct porosity dependence for
simulated permeabilities. For expressions~4! and~5! ~curves
3 and 4 in Fig. 6!, fits were made to all data points.

As can be seen from Fig. 6, the porosity region in wh
the Kozeny equation in its basic form, Eq.~2!, is adequate
for this particular system, is quite narrow. Taking into a
count the effect of tortuosity by Eq.~3! improves the fit only
slightly. The result is significantly improved only by intro
ducing the effective porosity, Eq.~4!, and an even bette
result is obtained by Eq.~5! in which the tortuosity and ef-
fective porosity are both included.

The fitted values of the Kozeny coefficientc were 8.2,
6.5, 10.4, and 5.8 for Eqs.~2!, ~3!, ~4!, and~5!, respectively.
This is in good agreement with various models and meas
ments found in literature, where values for the Kozeny co
ficient c typically reported are in the range from 2 to 1
@1,2,4#.

A three-dimensional simulation of fluid flow through
bed of penetrable spheres was made earlier in Ref.@25#,
where good quantitative agreement with the Kozeny eq
tion ~2! was obtained down tof'0.1, below which there
was still a good qualitative fit. The difference between the
and the present results is caused by the weaker tenden
that case to form dead-end pores, and the much lower v
of the percolation thresholdfc of the three-dimensional sys

FIG. 6. The simulated dimensionless permeabilityk/R0
2 of the

porous system as a function of porosityf. The error bars show the
statistical errors in permeability. Curves 1–4 show the predicti
given by the permeability expressions Eqs.~2!–~5!, respectively.
e
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tem used in Ref. @25# in comparison with the two-
dimensional system used here. Therefore, for such a th
dimensional system, effective porosity may be close to
geometrical porosity also for rather low values of the por
ity.

The permeabilities simulated for the regularly arrang
rectangles are shown in Fig. 7 with open squares. The cu
number 1 shows the prediction for the permeability of th
system as given by the unit cell approach@5#, namely

k5
R0

2

8e
@2 lne21.47612e21.774e214.076e31O~e4!#,

~12!

wheree512f. It is evident from Fig. 7 that the expressio
Eq. ~12! approximates the simulated permeabilities with
reasonably good accuracy for porosities higher than 0.6.
lower porosities the unit cell approach seems to fail. Cu
number 2 in Fig. 7 shows the permeability as given by E
~2!. Here the fit was made for all data points with the res
c59.9. Contrary to random systems, the Kozeny equat
seems to give a reasonably good approximation for the
meability of a regular square lattice.

Theoretical analyses and measurements both suggest
for inhomogeneous systems in which the obstacles
placed randomly without overlapping, inhomogeneity can
crease the permeability by as much as 50% as compared
regular lattice@5#. This result also holds for systems wit
overlapping obstacles and high porosities when the proba
ity of overlapping is small. Curve number 3 in Fig. 7 show
the prediction of the unit-cell approach Eq.~12! with a 50%
increase added to it. This curve is seen to approximate
simulated permeabilities for the random system only for p
rosities higher than 0.7.

Near the percolation thresholdf5fc , the permeability
of a porous medium often follows a scaling law of the for

s

FIG. 7. The simulated dimensionless permeabilitiesk/R0
2 of the

random porous system~solid circles! and the regular lattice~open
squares! as a function of porosity. Curve 1 shows the permeabi
given by the unit cell approach, Eq.~12!. Curve 2 shows the per
meability given by the Kozeny law, Eq.~2!. Curve 3 shows the
permeability of Eq.~12! multiplied by 1.5.
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k5a~f2fc!
m. ~13!

A three-parameter fit by the scaling law Eq.~13! to the simu-
lated permebilities in the regionf,0.5, shown in Fig. 8,
gives the critical exponentm52.8, the percolation threshol
fc50.33, and the constant of proportionalitya5350. Notice
that the value of the critical exponentm obtained here is
equal to that obtained for a model in which circles are u
instead of rectangles@15#.

V. ERROR ESTIMATES

The accuracy of lattice-gas simulations depends on
ratios of the mean free pathl of the fluid particles to the
sizes of the obstacles and pores@22–24,29,30#. The simu-
lated flow field does not approach the continuum limit unle
these ratios are small. The finite size dependence of pe
ability is known @29# to obey the scaling lawk}11a/R,
where R is the characteristic size of the system in latti
units, anda is a constant that depends on the details of
simulation model used. We studied the finite lattice size
fects for a varying porosity usingL3L lattices withL vary-
ing in the range 100<L<800. The size of the rectangle
used in these simulations wasL/20 or L/10. With porosities
higher than 0.5, the average relative error of the calcula
permeabilities due to the finite lattice size~8003800! was
estimated to be less than 5% .

Due to the finite-size effects, simulations by the pres
method of fluid flow in a random medium with low porosit
will not produce accurate results when the porosityf is very
close to the percolation threshold@23,29#. The error in per-
meability due to finite-size effects was estimated to be l
than 10% forf50.40. Therefore, the simulations appear
be quite accurate in the whole porosity region analyzed h
This conclusion is also substantiated by the reasonable v
found for the critical exponentm of permeability close to the
percolation threshold.

FIG. 8. The simulated dimensionless permeabilityk/R0
2 of the

random porous system as a function off2fc . The solid line is the
fit by Eq. ~13! with a5350,fc50.33, andm52.8.
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VI. DISCUSSION

We used the lattice-gas method to simulate numerical
creeping flow of Newtonian fluid through a two-dimension
porous substance that is composed of randomly placed
angles of equal size and unrestricted overlap. Numerical
relations were found between the specific surface, tortuos
effective porosity, permeability, and porosity of the mod
porous structure. It was an important part of the analysis
the dependence on porosity of the specific surface area
also derived analytically for the medium. In fact the analy
cal result is applicable to a slightly more general case
which the medium consists of particles of arbitrary but eq
shape.

Effective porosity, as well as tortuosity, were determin
by simulations as functions of porosity. Excellent polyn
mial fits were found to the simulated points, but it was n
possible to deduce simple analytical expressions for th
quantities that would have been qualitatively correct in
whole porosity range.

Several modifications of the Kozeny law for permeabil
were compared with the numerical results found by
lattice-gas simulations. The original Kozeny equation w
found to hold within a narrow porosity region 0.7,f,0.9
only. The discrepancy observed at lower values of poro
was found to arise from the tendency in that case of
model porous medium to form small nonconducting por
Excellent agreement was found between the numerical
sults and a modified Kozeny law, Eq.~5!, in which the ef-
fects of both the tortuosity and effective porosity were tak
into account. The inclusion of the effective porosity in th
expression for permeability was found to play the major r
in this agreement, being of crucial importance for porosit
approaching the percolation thresholdf5fc .

It was possible to simulate the permeability even qu
close to the percolation threshold. A clear scaling behav
extending over two orders of magnitude was found fork.
The scaling exponentm52.8 found in this way agrees we
with that derived previously for a similar model porous m
dium composed of two-dimensional spheres. Simulations
effective porosity and tortuosity could not be reliably ma
close enough to the percolation threshold, such that the s
ing behavior in this limit of these quantities could have be
found.

Permeability of a regular array of rectangles was a
simulated. Very much as expected, forf.0.7 the perme-
ability of the regular lattice is lower than that of random
positioned rectangles with the same porosity, the latter be
1.5 times bigger. For low porosities,f,0.55, the permeabil-
ity of the regular lattice is of course higher as there is
percolation threshold in this case.

It is evident that the permeability of two-dimensional ra
dom porous media is very much affected by restrictions
flow caused by narrow passages and dead-end pores. Th
some previous evidence that these effects are not nearl
important in three dimensions. It may well be, however, th
the actual structure of the pore space available for flow pl
an important role in three dimensions. It remains to be se
e.g., if effective porosity becomes important for such thre
dimensional porous structures in which the percolat
threshold is relatively high.
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