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Permeability and effective porosity of porous media
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The concept of permeability of porous media is discussed, and a modification of Kozeny’s permeability
equation to include the effect of effective porosity is introduced. An analytical expression for the specific
surface area of a system constructed of randomly placed identical obstacles with unrestricted overlap is
derived, and a lattice-gas cellular automaton method is then used to simulate the dependence on porosity of
permeability, tortuosity, and effective porosity for a flow of Newtonian uncompressible fluid in this two-
dimensional porous substance. The simulated permeabilities can well be explained by the concept of effective
porosity, and the exact form of the specific surface area. The critical exponent of the permeability near the
percolation threshold is also determined from the simulatip®$063-651X%97)11109-4

PACS numbdps): 47.55.Mh, 47.15-x

[. INTRODUCTION During the last few years, rapid development of comput-
ers and computational algorithms has made possible direct
Studies of flow through porous media have mainly beersimulations of complicated fluid flow phenomena. Among
concerned with the derivation of macroscopic laws for thethe promising new methods are lattice-gas and lattice Boltz-
fluid flow. For the case of creeping flow of a single viscousmann method§17-23 that can be applied to a large variety
fluid through a porous medium, e.g., the phenomenologicabf fluid flow problems. The geometrical versatility of these

law first discovered by Darcy, methods makes them particularly useful in simulating flows
in irregular geometrief24—34.
k In this paper we use the lattice-gas method to simulate
a=- ;Vp, (1) numerically a creeping flow of Newtonian fluid through a

two-dimensional porous substance that consists of randomly

is known to hold for a wide variety of natural porous mediaplaced rectangles of equal size and unrestricted overlap.
ranging from loose sand to tight granite roglts-3]. Hereq ~ Within this numerical approach, we study correlations be-
is the flux of the fluid through the porous mediupm,is the  tween various macroscopic parameters such as permeability,
viscosity of the fluid, ang is the fluid pressure. The perme- Porosity, effective porosity, specific surface area and tortu-
ability coefficient k is a measure of fluid conductivity O0sity, which are often used to characterize transport phenom-
through the substance. ena in porous media. The model of porous medium used in
The prediction of the permeabilityin Eq. (1) for various  this work is chosen mainly because it is possible to derive in
porous media has been a long-standing problem of greéhis case an exact expression for the specific surface area.
practical relevance. The experimental methods used in th&his is useful when comparing simulation results with theo-
studies have varied from rather straightforward measuretetically derived expressions. To this end the concept of ef-
ments[3—6] to more sophisticated approaches, which utilize fective porosity was found to be of crucial importance, in
e.g., mercury porosimetry, electrical conductivity, nuclearexplaining the simulated permeability in particular. The be-
magnetic resonance, and acoustic properties of the mediufigvior of permeability near the percolation threshold was
[6-12. Theoretical work has often involved models with also analyzed.
simplified pore geometries, which allows an analytical solu-
t?on of the microscopic flow pgttfarr[sl_,z,la. More sophis- Il. PERMEABILITY OF A POROUS SUBSTANCE
ticated models based on statistical methods have also been
used[2,3,14. However, due to the extremely complex nature In theoretical and experimental work on fluid flow in po-
of the phenomena involved, many basic questions remairous media it is typically attempted to find functional corre-
unanswered. Various correlations between the permeabilitiations between the permeability and some other macro-
and the parameters describing the geometrical properties stopic properties of the porous medium. Among the most
the medium have been suggested, but a general form for tHeportant of such properties are the porosityand the spe-
permeability as a function of porosity is still lacking. cific surface are&, which give the ratios of the total void
Percolation theory is an invaluable tool in the theoreticalvolume and the total interstitial surface area to the bulk vol-
studies of flow phenomena in porous media and fracturetime, respectively. Another useful characteristic of porous
rock [15,16. Percolation concepts are also essential for thenedia is the tortuosity-, which has been introduced to ac-
correct interpretation of many experimental data. The studgount for the complexity of the actual microscopic flow paths
of percolation properties of fluid flow in a porous medium is through the substance. Tortuosity can be defined as the ratio
usually very difficult. In this work we use direct numerical of a (properly weighteglaverage length of microscopic flow
simulations to find the scaling law for the permeability of a paths to the length of the system in the direction of the mac-
two-dimensional porous medium. roscopic flux[35].
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Simple dimensional analysis suggests that the permeabil-
ity of a porous medium is of the fortk=f(¢,7)/S?, where
f(¢,7) is a dimensionless function @ andr. Various sim-
plified models can be used to find suitable candidated for
Darcy’s law, Eq.(1), can easily be derived within the simple
capillary theory by Kozeny, in which the porous medium is
envisaged as a layer of solid material with straight parallel
tubes of a fixed cross-sectional shape intersecting the sample.
Within this model, the permeability is explicitly given as

3
k=¢

2

)

wherec is the Kozeny coefficient that depends on the cross

SeCtiOn of the Capillari_es. For Cylindrica_l ca_lpillariet.,?Z_. FIG. 1. A porous sample composed of 300 rectangles and hav-
The smplest way to introduce 'Fortl:IOSIty in the capillary ing a porosity of¢p=0.47, and a dimensionless specific surface area
model is to allow the tubes to be inclined in such a way that s s_ g gg.

the axes of the capillaries form a fixed anglewith the
normal of the surface of the materiékhile the azimuthal

threshold appears at a finite porosity, the Kozeny equa-
angle of the tubes is randomly distribujeth this case the PP P iy v ed

tion, as given by Eq92) or (3), is not valid for¢p— ¢ .

permeability becomes The simplest way to modify Eqs$2) and (3) to include
3 the effect of nonconducting pores is to replace the porasity
K= ¢ 3) with the effective porosityp.¢ (notice that in simple capil-
cr2s?’ lary models¢q= ¢). We thus obtain
where 7= 1/co9 is the tortuosity of the medium. Equations ¢gff
(2) and(3) are perhaps the most widely used expressions for k= g S

the permeability of a porous medium. Porous media can of-
ten be found to conform to them, although quantitative,,
agreement should not generally be expected. For systems

composed of randomly placed obstacles, e.g., permeability #2
behaves for high porositiesp(—~1) as 1/(+ ¢), and the k= o (5)
Kozeny model is not valid. cr2s?

While considering flow through a porous medium, only
the interconnected pores are of interest, as the occluded porégthis point, we shall not try to substantiate E¢#). and(5)
(pores not connected to the main void spade not contrib- ~ further. Instead, we shall apply the lattice-gas cellular au-
ute to the flow.(The term porosity is sometimes used to tomaton method for fluid flow in a two-dimensional random
include the interconnected pore space onhhe dead-end porous medium, and compare the simulated results with per-
pores are another type of pores that contribute very little taneabilities given by Eqg2), (3), (4), and(5). Notice that all
the flow. These pores belong to the interconnected pore#iree quantitiespe, 7, andS are functions of porosity.
but, owing to their geometry, no global pathlines intersect In what follows we shall consider a simple model of po-
them. The occluded pores and the dead-end pores form theus media in which rectangles of equal size and unrestricted
nonconducting pore space of the medium. The effective poeverlap are placed randomly in a two-dimensional volume
rosity ¢ Of @ porous medium can be defined as the ratio ofsee Fig. 1 Although such a model may be considered
the volume of the conducting pores to the total volume.  somewhat artificial, it nevertheless captures much of the geo-

A common method of constructing models of porous me-metrical complexity of natural porous media, and gives a
dia is to place solid obstacles in a two- or three-dimensionagood testing ground for the validity of various permeability
test volume[15]. The properties of the medium are deter- equations in two dimensions.
mined by the shape, size, and number of the obstacles, and In order to compare various models of permeability with
by the distribution of the obstacles within the volume. Inresults of numerical simulations effectively, it is beneficial
such “materials” with high porosity, all of the void space first to express the formulas Eq&), (3), (4), and (5) as
usually contributes to the flow through it. The effective po-explicit functions of porosityp alone. To do this, we have to
rosity of the medium is then equal to the porosity. In contrasfind the dependence on the poros@yof the specific surface
to this, for low porosity materials, a large part of the total areaS, tortuosity =, and effective porosityp.
void space may be nonconducting. For such media the effec- For the model of freely penetrable obstacles, an analytical
tive porosity may therefore be significantly smaller than therelation between the specific surface area and porosity can
geometrical porosity. At the percolation threshold, defined agasily be found. Considd€ freely overlapping obstacles of
the point where the medium becomes completely blockedarbitrary but equal shape and size, and placed in a voMme
permeability and effective porosity both vanish. It is there-in ann dimensional space. L&, andA, be the volume and
fore clear that for porous media for which the percolationsurface area of these obstacles, respectively. The expectation
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0.8 , , , . . . below]. We shall also present a corresponding approximative
: relation between the effective porosity and poroige Eq.
LN (11) below].

0.6 1 -

Ill. LATTICE-GAS SIMULATIONS

(=]
= 0.4- i We solved numerically the behavior of the two-
o dimensional creeping flow for the present model of random
n porous medium using the FHP-III lattice-gas metHdd].
The number of fluid particles per lattice site was 3.5, which
0.2+ i provides the best approximation for the solution of the lin-
earized Navier-Stokes equatidoreeping flow within the
0.0 : present method17]. With this density the logarithmic in-
: ' ' ' T ' ' crease of viscosity with an increasing system size is also
0.5 04 05 06 07 08 09 10 avoided[36]. Contrary to the common practice of imitating
¢ the permeability measurements, where the sample is placed
FIG. 2. The simulated di onl i ; in a tube[26,29,30, we imposed periodic boundary condi-
G. 2. The simulated dimensionless specific surface 82 s on the lattice in both directions. This approach has the

as a function of porosityb. HereR,=18.6 is the hydraulic radius advantage of decreasing the finite-size effects, and, e.g., the
of the rectangles. The statistical errors of the simulated values argoundar effects caused by fluid penetrating into the borous
smaller than the plotting symbols. The solid line is given by the y y P 9 P

theoretical expression E9) with n=2 (two-dimensional spage meQI_um are elm_nnated. The f.lwd was forced to move in the
positive x direction by applying an external force on the
particles[36]. The porosity¢ of the medium was defined as
the ratio of the number of unoccupied sites to the number of
all lattice sites.
The tortuosity and the effective porosifh.; were calcu-
VAL lated using both 108100 and 20& 200 lattices with rect-
b= ( 1— _0) . (6) angles of 1x 10 lattice sites. The larger lattice was used in
v the porosity regiony<<0.55. The number of different con-
o ] figurations was about 7 for the smaller lattice and 30 for the
Similarly, the expectation value of the total surface area ofgrger attice. In these calculations, the velocity field was first
the ensemble of obstacles, is given by the total number of  5j10wed to saturate for 40 000 time steps for each configura-
obstacles times the surface area of a single obstacle times thg, The local velocities of the particles were then averaged
probability that a given point on the surface of an obstacle igyyer 400 000 time steps in order to ensure an undisturbed
not overlapped by any other obstacle, i.e., and smooth velocity field. The flow lines starting from each
lattice site in the void space were found by interpolating the
time-averaged flow velocity field. The tortuosityof each
sample was then calculated using the method described in
Ref.[35]. If the flow lines did not find their way through the
Solving the ratioV,/V from Eq. (6), and using Eq(7), we  whole medium, their starting points were assumed to lay in

value of the porosity¢ is equal to the probability that a
given point insideV is not overlapped by any of thi€ ob-
stacles, i.e.,

VO K-1
A=KAO<1—V> . (7)

find that the specific surface ar8sA/V is given by the nonconducting pore space. Finally, the effective porosity
of each porous sample was calculated as the ratio of the

N okl TR number of those lattice sites from which the interpolation of

S= R—O¢ -1 (8 the flow lines through the whole medium was successful, to

the total number of lattice sites.

The specific surface arega and the permeabilitk were
calculated using a 800800 lattice with rectangles of 4040
lattice sites. The number of rectanglésvaried from 20 to
390 corresponding to porosities ranging from 0.95 to 0.38.
The number of different configurations used at elclvas

I

whereRy=nV,/A, is the hydraulic radius of the obstacles.
In the limits K—o and V—«, such that the porosityp
remains constant, we obtaf® in a simple and appealing

form, ten in most cases. The number of iterations needed for reach-
ing an adequate degree of saturation of the velocity field

S=— £¢ Ing (9) increased with an increasing porosity. The saturation time

Ry used in permeability calculations varied between 30 000 and

200 000 time steps. After saturation, the fluid velocity was

(see Fig. 2 found by averaging the particle velocities over 20 000 time

In an earlier work{35] we found numerically an approxi- steps.

mate correlationr=0.8(1— ¢)+1 for the tortuosity in the In order to study the difference between random systems

case of freely penetrating rectangles. The simulations werand regular lattices, which are often used in theoretical stud-
then made for porosities greater than 0.5. In Sec. IV belowes, we also made permeability simulations for systems in
we shall show new results reaching ¢e=0.4 [see Eq(10)  which the rectangles were placed in a regular square lattice.
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FIG. 3. The simulated tortuosity as a function of porosityp. FIG. 4. The conducting pore space of the porous sample shown
The solid squares show the values of tortuosity simulated for a 20¢h Fig. 1 corresponding to an effective porosify;=0.40.
X 200 lattice, and the solid circles show the results from R3],
where a 10& 100 lattice was used. The error bars include the Sta-porosity as a function of porosity_ The error bars shown in-
tistical errors in tortuosity only. The solid line is the fit to the cjude only the statistical error associated with the random
simulated points by E¢10). positioning of the obstacles. The solid line shown in Fig. 5 is

) ) a fit to the calculated points by
In this case the number of rectangles varied from 16 to 256,

which corresponded to porosities ranging from 0.96 to 0.36. ber=ax—(2a+ ) X2+ (a+ 1+ do)x (11)
e Cc C )

IV. RESULTS wherex=(¢— ¢o)/(1— ¢.). The fitted value of the param-

In Fig. 1 we show an example of a porous medium con-etera is a=0.3. The expression E@L1) is simply the most
structed of 300 rectangles of size ¥@0 sites placed ran- 9eneral third-order polynomial in which the natural con-
domly in a 800< 800 lattice. The porosity of this sample was SIraints, ¢er=d¢der/dp=1 at ¢=1, and $er=0 at
$=0.47 and the dimensionless specific surface area wa=®#c=0.33, have been implemented. With the given val-
S=0.69. ues of ¢, and a, this expression also fulfills the condition

In Fig. 2 we show the plot of the simulated specific sur-that ¢er=¢ for all $=<1. We emphasize that the true func-
face areaS as a function of porositys together with the tional form of ¢¢q as a function o is not known. Expres-
theoretical curve, Eq9). The values of are expressed here Sions other than Eq11) can also be found which would give
in dimensionless form, being multiplied by the hydraulic ra-& 90od quantitative fit to the results of the present simulation.
dius Ry of the rectangles. Notice that due to the triangularAS @n example we give the expressigpg=1—In¢/nd,
simulation lattice used here, the vertical sides of the recthich gives a good quantitative fit to the simulated results,
angles are shorter than the horizontal sides by a factor diut, with porosities higher than 0.8, the expression produces
sin(w/3). The hydrodynamic radius was therefdtg~18.6

lattice spacings. 10 L L L ! L !

The simulated values of tortuosityare shown in Fig. 3
as a function of porosity. Also shown in this figure is a fit
to the simulated values using a function of the form 0.8 1 i

4
1- i e a
rm1a- P (10 . 06
(¢— o) &

with the values of the fitting parameters beiag 0.65 and 0.4+ i
m=0.19. The expression E¢L0) has been chosen such that {
tortuosity is a monotonously decreasing function of porosity 0.2 -
(at > ¢¢) and diverges at the percolation thresheld[ 15].
For the present system the percolation threshold.is 0.33 0 . . . . : :
[37]. _ o 0.3 0.4 05 0.6 0.7 0.8 0.9 10

The conducting pore spadwhite region$ of the porous ¢
sample shown in Fig. 1, and determined by the method de-
scribed above, is shown in Fig. 4. Tkgeometrical porosity FIG. 5. The simulated effective porositgfs as a function of
of the sample isp=0.47 while the effective porosity in this porosity ¢. The solid line is the fit by E(11), and the dotted line
particular case ighs= 0.40. is the curveg.s=¢. The error bars include only the statistical

In Fig. 5 we show the simulated values of the effectiveerrors in the effective porosity.
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FIG. 6. The simulated dimensionless permeabikiti of the FIG. 7. The simulated dimensionless permeabilikiRj of the
porous system as a function of porosity The error bars show the random porous systerfsolid circles and the regular latticéopen
statistical errors in permeability. Curves 1-4 show the predictionssquaresas a function of porosity. Curve 1 shows the permeability
given by the permeability expressions E—(5), respectively. given by the unit cell approach, E¢L2). Curve 2 shows the per-

meability given by the Kozeny law, Eq2). Curve 3 shows the
b larger, if only very slightly, thanp. It thus fails to give ~ Permeability of Eq(12) multiplied by 1.5.
a qualitatively correct behavior in this porosity region.

The permeabilities simulated for the model system ardem used in Ref.[25] in comparison with the two-
shown in Fig. 6. The error bars again include the statisticaflimensional system used here. Therefore, for such a three-
errors in permeability only. Also shown are the predictionsdimensional system, effective porosity may be close to the
given by the permeability expressions, E—(5), with S, geometrical porosity also for rather low values of the poros-
7, and ¢ given by Eqgs.(9), (10), and (11), respectively, ity.
with the theoretical valueb,=0.33. Here the Kozeny coef-  The permeabilities simulated for the regularly arranged
ficientc was used as the fitting parameter. The permeabilitiesectangles are shown in Fig. 7 with open squares. The curve
were made dimensionless by dividing by the hydraulic radiusitumber 1 shows the prediction for the permeability of this
R, squared. For expressions E). and(3) (curves 1 and 2 System as given by the unit cell approd&, namely
in Fig. 6), fits to all of the data points were clearly unsatis-
factory. Therefore fits were made, instead, in a narrow po- R2
rosity region at midporosities, where these formulas seem to k= —[ Ine—1.476+ 26— 1.7746%+ 4.076>+ O(€%)],
give a qualitatively correct porosity dependence for the
simulated permeabilities. For expressigdsand(5) (curves (12)

3 and 4 in Fig. 8, fits were made to all data points.

As can be seen from Fig. 6, the porosity region in whichwheree=1— ¢. It is evident from Fig. 7 that the expression
the Kozeny equation in its basic form, E@), is adequate Eq. (12) approximates the simulated permeabilities with a
for this particular system, is quite narrow. Taking into ac-reasonably good accuracy for porosities higher than 0.6. For
count the effect of tortuosity by E@3) improves the fit only lower porosities the unit cell approach seems to fail. Curve
slightly. The result is significantly improved only by intro- number 2 in Fig. 7 shows the permeability as given by Eq.
ducing the effective porosity, Eq4), and an even better (2). Here the fit was made for all data points with the result
result is obtained by Eq5) in which the tortuosity and ef- ¢=9.9. Contrary to random systems, the Kozeny equation

fective porosity are both included. seems to give a reasonably good approximation for the per-
The fitted values of the Kozeny coefficieatwere 8.2, meability of a regular square lattice.
6.5, 10.4, and 5.8 for Eq$2), (3), (4), and(5), respectively. Theoretical analyses and measurements both suggest that,

This is in good agreement with various models and measurder inhomogeneous systems in which the obstacles are

ments found in literature, where values for the Kozeny coefplaced randomly without overlapping, inhomogeneity can in-

ficient ¢ typically reported are in the range from 2 to 12 crease the permeability by as much as 50% as compared to a

[1,2,4]. regular lattice[5]. This result also holds for systems with
A three-dimensional simulation of fluid flow through a overlapping obstacles and high porosities when the probabil-

bed of penetrable spheres was made earlier in F&H], ity of overlapping is small. Curve number 3 in Fig. 7 shows

where good quantitative agreement with the Kozeny equathe prediction of the unit-cell approach E42) with a 50%

tion (2) was obtained down t@~0.1, below which there increase added to it. This curve is seen to approximate the

was still a good qualitative fit. The difference between thesesimulated permeabilities for the random system only for po-

and the present results is caused by the weaker tendency fiasities higher than 0.7.

that case to form dead-end pores, and the much lower value Near the percolation threshold= ¢., the permeability

of the percolation threshold, of the three-dimensional sys- of a porous medium often follows a scaling law of the form
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s VI. DISCUSSION

10 : :

We used the lattice-gas method to simulate numerically a
creeping flow of Newtonian fluid through a two-dimensional
porous substance that is composed of randomly placed rect-
o angles of equal size and unrestricted overlap. Numerical cor-
D:o relations were found between the specific surface, tortuosity,
~ 10‘3 effective porosity, permeability, and porosity of the model
~ { porous structure. It was an important part of the analysis that

the dependence on porosity of the specific surface area was
also derived analytically for the medium. In fact the analyti-
cal result is applicable to a slightly more general case in
which the medium consists of particles of arbitrary but equal
1074 , shape.
= =] ' 0 . . . .
10 10 10 Effective porosity, as well as tortuosity, were determined
¢ — ¢c by simulations as functions of porosity. Excellent polyno-
mial fits were found to the simulated points, but it was not

FIG. 8. The simulated dimensionless permeabiiti? of the ~ POssible to deduce simple analytical expressions for these
random porous system as a functiongof .. The solid line isthe  quantities that would have been qualitatively correct in the
fit by Eq. (13) with a= 350, ¢.=0.33, andu=2.8. whole porosity range.

Several modifications of the Kozeny law for permeability
B u were compared with the numerical results found by the
k=a(¢—do)". 13 lattice-gas simulations. The original Kozeny equation was
found to hold within a narrow porosity region G<#<0.9
i ) . only. The discrepancy observed at lower values of porosity
A three-parameter fit by the scaling law Eg3) to the simu- a5 found to arise from the tendency in that case of the
lated permebilities in the regiop<0.5, shown in Fig. 8, model porous medium to form small nonconducting pores.
gives the critical exponent=2.8, the percolation threshold Excellent agreement was found between the numerical re-
¢.=0.33, and the constant of proportionaliy- 350. Notice  sults and a modified Kozeny law, E¢F), in which the ef-
that the value of the critical exponept obtained here is fects of both the tortuosity and effective porosity were taken
equal to that obtained for a model in which circles are usednto account. The inclusion of the effective porosity in the
instead of rectanglgdl5]. expression for permeability was found to play the major role
in this agreement, being of crucial importance for porosities
approaching the percolation threshaebe= ¢ .
V. ERROR ESTIMATES It was possible to simulate the permeability even quite
close to the percolation threshold. A clear scaling behavior

The accuracy of lattice-gas simulations depends on thextending over two orders of magnitude was found Kor
ratios of the mean free path of the fluid particles to the The scaling exponent=2.8 found in this way agrees well
sizes of the obstacles and pof&2-24,29,3Q0 The simu-  with that derived previously for a similar model porous me-
lated flow field does not approach the continuum limit unlessdium composed of two-dimensional spheres. Simulations of
these ratios are small. The finite size dependence of permeffective porosity and tortuosity could not be reliably made
ability is known [29] to obey the scaling lavk>x1+«/R,  close enough to the percolation threshold, such that the scal-
where R is the characteristic size of the system in latticeing behavior in this limit of these quantities could have been
units, anda is a constant that depends on the details of théound.
simulation model used. We studied the finite lattice size ef- Permeability of a regular array of rectangles was also
fects for a varying porosity usingX L lattices withL vary-  simulated. Very much as expected, fér>0.7 the perme-
ing in the range 108L<800. The size of the rectangles ability of the regular lattice is lower than that of randomly
used in these simulations wh$20 orL/10. With porosities positioned rectangles with the same porosity, the latter being
higher than 0.5, the average relative error of the calculated.5 times bigger. For low porositie$,<0.55, the permeabil-
permeabilities due to the finite lattice sizZ800x 800 was ity of the regular lattice is of course higher as there is no
estimated to be less than 5% . percolation threshold in this case.

Due to the finite-size effects, simulations by the present It is evident that the permeability of two-dimensional ran-
method of fluid flow in a random medium with low porosity, dom porous media is very much affected by restrictions on
will not produce accurate results when the porogitis very  flow caused by narrow passages and dead-end pores. There is
close to the percolation threshdl@3,29. The error in per- some previous evidence that these effects are not nearly so
meability due to finite-size effects was estimated to be lesgnportant in three dimensions. It may well be, however, that
than 10% for¢=0.40. Therefore, the simulations appear tothe actual structure of the pore space available for flow plays
be quite accurate in the whole porosity region analyzed herean important role in three dimensions. It remains to be seen,
This conclusion is also substantiated by the reasonable valueg., if effective porosity becomes important for such three-
found for the critical exponent of permeability close to the dimensional porous structures in which the percolation
percolation threshold. threshold is relatively high.
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